Machine learning

models of state-citizen communication on social networks from the perspective of digital government

Authors

DOI:

https://doi.org/10.56162/transdigital529

Keywords:

machine learning, e-government, citizen participation, social networks, digital communication

Abstract

In recent years, the State has attempted to transform interactions between institutions and citizens. However, unidirectional models persist, limiting transparency and participation. This study analyzed the digital communication of the Secretariat of Security, Coexistence, and Justice of Bogota, Colombia, on TikTok, based on 495 posts and 23,434 comments. A mixed-method approach was applied, using Python programming languages to classify interactions and detect institutional responses in comments and content. The Viable Systems Model was also used to represent the entity's social media communication flow and project two scenarios based on e-government. The results showed that, although 10.9% of the comments could be considered questions, the entity did not respond to any comments. In this way, the current communication flow was projected, characterized by a unidirectional model typical of e-government 1.0. Its limitations were also contrasted with e-government 2.0and 3.0 scenarios, where machine learning and natural language processing enable real-time feedback. It was concluded that the integration of e-Government 3.0 can overcome biases and advance communication that is more adaptive, participatory, and focused on citizen needs.

References

Arguelles Toache, E. (2022). Las etapas de desarrollo del gobierno electrónico: revisión de la literatura y análisis de las definiciones. Entreciencias, 10(24), 1–16. https://doi.org/10.22201/enesl.20078064e.2022.24.81028

Beer, S. (1984) The viable system model: Its provenance, development, methodology and pathology. Journal of the operational research society, 35(1), 7-25.

Breiter, A., & Hepp, A. (2018). The Complexity of Datafication: Putting Digital Traces in Context. En A. Hepp, A. Breiter, & U. Hasebrink (Eds.), Communicative Figurations: Transforming Communications in Times of Deep Mediatization (pp. 387–405). Springer.

Capgemini, Sogeti, IDC & Politecnico di Milano. (2018). eGovernment Benchmark 2018. Securing eGovernment for all. https://www.capgemini.com/es-es/wp-content/uploads/sites/16/2022/12/eGovernment-Benchmark-2018-Insight-report-13.pdf

Chadwick, A., & May, C. (2003). Interaction between States and Citizens in the Age of the Internet:“e?Government” in the United States, Britain, and the European Union. Governance, 16(2), 271-300.

Dobija, D., Grossi, G., Mora, L., Staniszewska, Z., Koz?owski, ?., & Kovbasiuk, A. (2023). Adaptive social media communication for web-based accountability. Government Information Quarterly, 40, 101859.

Dunleavy, P., Margetts, H., Bastow, S., & Tinkler, J. (2006). Digital era governance: IT corporations, the state, and e-government. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199296194.001.0001

Hernández Sampieri, R., Fernández Collado, C., y Baptista Lucio, P. (2014). Metodología de la investigación. McGraw-Hill.

Massal, J., & Sandoval, C. (2010). Gobierno electrónico. ¿estado, ciudadanía y democracia en internet?:" state, citizenship and democracy on the internet?. Análisis político, 23(68), 3-25. https://revistas.unal.edu.co/index.php/anpol/article/view/45788

Meijer, A., Rodríguez Bolívar, M. P., & Gil-Garcia, J. R. (2018). From e-government to digital era governance and beyond: Lessons from 15 years of research into information and communications technology in the public sector. Journal of public administration research and theory, 1-6. https://academic.oup.com/DocumentLibrary/jpart/EGov-Introduction.pdf

Mergel, I. (2017). Social media communication modes in government. En C. Yu-Che, & M. J. Ahn (Eds.). Routledge Handbook on Information Technology in Government (pp.168-179). Routledge.

Misuraca, G., Barcevicius, E., & Codagnone, C. (2020). Exploring Digital Government Transformation in the EU–Understanding public sector innovation in a data-driven society. Publications Office of the European Union. https://publications.jrc.ec.europa.eu/repository/handle/JRC121548

Peña Mateo, A. P. C. (2024). Gobierno electrónico, gestión pública y su influencia en la satisfacción de los ciudadanos en el gobierno regional, año 2023. Aula Virtual, 5(12). https://zenodo.org/records/12679763

Pichiyan, V., Muthulingam, S., Sathar, G., Nalajala, S., Akhil, Ch., & Nath Das, M. (2023). Web Scraping using Natural Language Processing: Exploiting Unstructured Text for Data Extraction and Analysis. Procedia Computer Science, 230, 193–202.

Sahu, S., Divya, K., Rastogi, N., Yadav, P. K., & Perwej, Y. (2022). Sentimental analysis on web scraping using machine learning method. Journal of Information and Computational Science (JOICS). https://joics.org/vol-12-issue-8-2022/

Senge, P. M. (1990). The art and practice of the learning organization (Vol. 1). Doubleday.

Terzi, S., Votis, K., Tzovaras, D., Stamelos, I., & Cooper, K. (2019). Blockchain 3.0 smart contracts in E-government 3.0 applications. arXiv, 1910.06092. https://arxiv.org/pdf/1910.06092

Vega Flor, J. G., y Saavedra Diaz, L. J. (2025). El gobierno electrónico en la administración de servicios públicos: un estudio bibliométrico. Esprint Investigación, 4(1), 289–308. https://doi.org/10.61347/ei.v4i1.111

Vizcaíno Zúñiga, P. I., Cedeño Cedeño, R. J., y Maldonado Palacios, I. A. (2023). Metodología de la investigación científica: guía práctica. Ciencia Latina Revista Científica Multidisciplinar, 7(4), 9723-9762. https://doi.org/10.37811/cl_rcm.v7i4.7658

Vrabie, C. (2023). E-Government 3.0: An AI Model to Use for Enhanced Local Democracies. Sustainability, 15(12), 9572.

Wukich, C. (2023). Social Media Data Analysis: A Focus on the Government–Citizen Dynamic. Natural Hazards Review, 24(4). https://doi.org/10.1061/NHREFO.NHENG-1818

Yuan, Y.-P., Dwivedi, Y. K., Tan, G. W.-H., Cham, T.-H., Ooi, K.-B., Aw, E. C.-X., & Currie, W. (2023). Government digital transformation: Understanding the role of government social media. Government Information Quarterly, 40, 101775.

Ziaja, S., Geray, M., Sebudubudu, D., & von Schiller, A. (2025). E?government and citizen?state relations: Evidence from a randomized information campaign with the Botswana Unified Revenue Service. Governance, 38(2), e12893.

Zwilling, M. (2023). Big Data Challenges in Social Sciences: An NLP Analysis. Journal of Computer Information Systems, 63(3), 537–554.

Autor de correspondencia

El autor de correspodencia se identifica con el siguiente símbolo: *

Published

24-10-2025

How to Cite

Rodríguez Paez, C. L., Rico Molina, R., & Sanabria Alvarez, W. (2025). Machine learning: models of state-citizen communication on social networks from the perspective of digital government. Transdigital, 6(12), e529. https://doi.org/10.56162/transdigital529

Issue

Section

Research reports

Categories